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Use of signal detection methods to identify associations between prenatal 
medication exposure and subsequent childhood cancers: a Nordic hypothesis- 
generating registry-based study
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Medical Care Administration, Region Stockholm, Stockholm, Sweden

ABSTRACT
Background: Childhood cancer is an important contributor to childhood mortality in high-income coun
tries. Information on associations between childhood cancer and in-utero exposure is absent or limited for 
most medications. Signal detection methods identify medications where research should be focused but 
have not been applied to datasets containing prenatal medication exposures and childhood cancers.
Research design and methods: The aim of this study was to apply and evaluate four signal detection 
methods – odds ratios (OR), the information component (IC), sequential probability ratio testing (SPRT), 
and Bayesian hierarchical models (BHM) – for identification of associations between medications 
dispensed during pregnancy and subsequent, incident diagnosis of childhood cancer <10 years, using 
linked Nordic registry data. Signal detection results were compared to propensity score adjusted odds 
ratios from generalized linear models.
Results: Analysis was performed for 117 medication-cancer pairs with 5 or more observations. The OR 
had the greatest sensitivity (0.75). The IC had a greater specificity (0.98) than the OR (0.95).
Conclusions: The IC may be the most appropriate method for identifying signals within this type of 
data. Reported signals should not be considered sufficient evidence of causal association and must be 
followed-up by tailored investigations that consider confounding by indication.
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1. Introduction

Childhood cancer is the second-leading cause of death for 
children aged 5–14 years in high-income countries [1]. 
Incidence rates among children aged 0–19 years vary across 
Europe, from approximately 120 to 230 per million per year, 
with most common malignancies being central nervous sys
tem neoplasms, leukemia’s, and lymphomas [2].

The etiology of childhood cancer is thought to involve a 
combination of genetic [3] and environmental factors [4–6]. 
Possible carcinogenic environmental risk factors include expo
sures that cross the placenta during the early formation of 
organs [7]. Many pregnant women take prescribed or over- 
the-counter medication during their pregnancy [8], and as 
such medications are a common prenatal exposure.

Genotoxicity and carcinogenicity testings are mandatory for 
market authorization, however animal studies can have poor 
predictive value in humans [9]. Consequently, information on 
risk of carcinogenicity in humans is absent or limited for many 
medication exposures during pregnancy. Only a small number of 
studies have investigated associations between exposure to in- 

utero medication and subsequent childhood cancer [10]. Many 
of these have major limitations, including the use of composite 
outcomes and exposures; small sample sizes; observation peri
ods that are too short; failure to control for confounders; and 
dependence upon self-reporting of medication use [10].

A safety signal is defined as any reported information on a 
possible causal relationship between a medication and adverse 
event, where the relationship was previously unknown or undo
cumented. Signal detection methods are quantitative statistical 
methods used to detect safety signals. They are commonly used 
within spontaneous adverse drug reaction reporting systems for 
pharmacovigilance. These methods analyze all possible associa
tions between all medications and all adverse outcomes, identify
ing a small number of specific medication-outcome pairs where 
more individuals than expected by chance have both the expo
sure and outcome (signals). These signals cannot be taken as 
evidence of causal associations but require further investigation. 
Signal detection methods can help identify where research should 
be focused for the most impact. Such methods have been used to 
screen for medication-cancer signals in adults [11–14] but are yet 
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to be applied to electronic health registries involving in-utero 
exposure and subsequent childhood cancers.

The aim of this study was to investigate the performance of 
four signal detection methods in identifying associations 
between medication use during pregnancy and subsequent 
childhood cancer risk, using nationwide health registries from 
three Nordic countries. We selected six large medication 
groups that are frequently used among women of childbear
ing age (antibiotics, antidiabetics, cardiovascular medications, 
immunosuppressive agents, sex hormones, and thyroid ther
apy), where previous studies have identified potential harmful 
associations between either the medication and childhood 
cancer [15–17], medication and adult cancers [18–20], or med
ication indication and childhood cancer [21–25].

As information on carcinogenicity of medications during 
pregnancy is limited, it is unknown which medications truly 
increase the risk of specific cancers. Propensity scores are a 
statistical technique that use the probability of being exposed 
conditional on a set of covariates. Individuals with the same 
propensity score have the same probability of being exposed 
given the set of covariates, and therefore the score can be 
used to control for any association between the exposure and 
confounding factors. As there is no gold-standard to compare 
detected signals to, we compared detected signals to the 
established method of propensity score adjusted odds ratios 
from generalized linear models. In general, calculating propen
sity score adjusted odds ratios for all medication-event com
binations (typically hundreds or thousands of combinations) 
would be too time-consuming. However, in this study we had 
only a small number of medication-cancer combinations with 
enough observations for analysis which allowed us to use 
results from propensity score adjusted odds ratios as our 
reference-standard.

We additionally investigated the effect of introducing con
founding control into the signal detection analysis pipeline, by 
using propensity scores to calculate standardized morbidity 
weights (SMW) to re-weight the populations prior to applying 
the signal detection methods.

2. Patients and methods

2.1. Study design

The design was a registry-based cohort study using health 
care data from Norway, Sweden, and Finland.

2.2. Data sources

Nationwide Nordic medical birth registry, prescription registry, 
cancer registry, and population registry data from Norway, 
Sweden, and Finland were used with linkage of data facilitated 
by unique personal identification numbers.

The Nordic medical birth registries provide accurate infor
mation on children eligible for inclusion. Notification has been 
mandatory for all livebirths since 1987 in Finland, 2007 in 
Norway, and 1973 in Sweden [26–28]. In Norway, date and 
cause of death, and date of migration, are also available within 
the medical birth registry. Population registries provide 

information on date and cause of death in Finland from 
1997 [29], and Sweden from 1952 [30].

Prescription registries contain records of all prescription dis
pensing and reimbursement at pharmacies, including date of 
dispensing and the medication’s Anatomical Therapeutic 
Chemical (ATC) code [27,31]. These registries have been available 
since 1994 in Finland, 2004 in Norway, and 2005 in Sweden [27,31].

Cancer registries contain information on cancer diagnosis. 
For childhood cancers, these are recorded using the 
International Classification of Diseases for Oncology (ICD-O-3) 
[32] and have been mapped to the International Classification 
of Childhood Cancer 3rd Edition (ICCC3) [33]. Reporting of 
incident cancers to the cancer registries has been mandatory 
since 1953 in Finland and Norway, and 1958 in Sweden 
[27,34]. Coverage varies between countries but is estimated 
to be over 90% for all [35–38].

2.3. Study population

The study population was all liveborn children recorded in the 
medical birth registries as born in the years 2007–2013 in 
Norway, 2010–2014 in Sweden, and 1997–2014 in Finland. 
Children were excluded if they, or their mother, had a missing 
identification number, as this would prevent linkage between 
registries. Children were also excluded if birthday or gesta
tional age at birth were missing as this would prevent identi
fication of the pregnancy window (Figure 1). Follow-up 
continued until cancer diagnosis or censoring due to death, 
emigration (only available for Norway), the child’s 10th birth
day or end of the study period 31 December 2019.

The total study population for analysis was 2,023,510. 
Analysis was performed overall (i.e. for ages 0–9 years, popula
tion 802,293), and stratified by ages 0–4 (population 
1,952,263) and 5–9 (population 801,163), as peak age of inci
dence differs by cancer type (Figure 1). Note that the sample 
size for the age group 0–9 years is smaller than the sample size 
for ages 0–4. Analysis for 0–9 years and 5–9 years excluded 
children born after 2010, as they were born too late to com
plete 10 years follow-up. Complete follow-up was required for 
both adjusted and unadjusted analysis.

2.4. Exposures

Exposure was defined as one or more maternal prescriptions of 
either antibiotics (ATC codes starting with J01), antidiabetics 
(ATC codes starting with A10), cardiovascular medications (ATC 
codes starting with C), immunosuppressive agents (ATC codes 
starting with A07E, H02A, L04A or M01), sex hormones (ATC 
codes G02BB01 or G02BA03, or starting with G03) or thyroid 
therapy (ATC codes starting with H03), at the 4th level ATC 
code, recorded in the prescription registries. A full list of ATC 
codes can be found in Supplementary Tables S1a–S1f.

The exposure window was defined as dispensing of pre
scription during pregnancy, from pregnancy start (last men
strual period calculated from gestational age at birth) to birth, 
as recorded in the medical birth registries. The same exposure 
window was used for all investigated medications.

Non-exposed were defined as women who were not dis
pensed the medication of interest during their pregnancy. 
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These women may have been dispensed other medications 
during their pregnancy.

2.5. Outcomes

Outcomes were defined as the first incident cancer diagnosed 
prior to the child’s 10th birthday given by ICCC3 subgroups, as 
recorded in the cancer registries. A full list of ICCC3 subgroups 
can be found in Supplementary Table S2. Childhood cancers 
arise from embryonal tissues and so do not completely map to 
the traditional organ systems used for classifying adult can
cers. The ICCC3 is based on the type and behavior of cancer 
cells and the most common childhood cancers have individual 
codes, making it preferable over ICD classification [33]. ICCC3 
subgroups were analyzed individually and not grouped, as 
grouping of heterogenous cancers may reduce precision.

2.6. Covariates

As outcomes were expected to be rare, and many covariates 
were available, propensity score adjustment was chosen to 

account for imbalance in measured baseline characteristics and 
risk factors for the outcome between exposure groups [39].

Covariates for adjustment were chosen a priori using subject 
knowledge and Directed Graphs (Supplementary Figure S1).

The following covariates were included. From the medi
cal birth registries: source country (Norway, Sweden, 
Finland); mother’s age (categorical: <20, 20–24, 25–29, 
30–34, 35–39, 40+); chronic hypertension (yes/no); chronic 
diabetes (yes/no); gestational diabetes for antidiabetic med
ications only (yes/no); centered calendar year at birth 
(indices); assisted reproductive technology (yes/no); child 
sex (male/female); parity (categorical: 0; 1; ≥2; missing); 
smoking in early pregnancy (categorical: yes; no; missing). 
From the cancer registries: history of maternal cancer prior 
to pregnancy (yes/no). From the prescription registries: 
medications dispensed to at least 100 women, and at 
least 10 women exposed to the medication and 10 
women unexposed to the medication in the 3-months 
prior to pregnancy for individual 2nd level, 3rd level, and 
4th level ATC codes (used as a proxy for comorbidities); any 
medication dispensed 3-months prior to pregnancy at any 
level of ATC (yes/no); number of different medications 

Figure 1. Flow-chart of study population.
Flowchart of the study population. * Individuals with missing identification number or gestational age were pre-excluded by registry holders, and information on the number excluded for 
this reason was not provided. The 2,023,510 individuals within the ‘Analysis Dataset’ were used to model propensity scores. 

EXPERT OPINION ON DRUG SAFETY 3



dispensed at any level of ATC in the 3-months prior to 
pregnancy (indices). Gestational diabetes was included as 
a covariate for antidiabetic medications as it was considered 
a strong predictor of medication use in pregnancy. As a 
diagnosis of gestational diabetes may have occurred after 
the dispensation of non-antidiabetic medications, it was not 
included as a covariate for non-antidiabetic medications. 
Full details of covariate definitions and covariates used 
within each propensity score can be found in supplemen
tary material (page 8–19).

2.7. Missing data

Cases with missing ID, gestational age or birth date were 
excluded from the analysis as described above. Cases with 
missing child sex (<5) were excluded from the propensity 
score analysis. There was no missing data in dispensing or 
diagnosis dates. A total of 1.1% of cases (21,855) were missing 
parity, and 5.7% of cases (114,998) were missing smoking in 
early pregnancy. No imputation was performed; missing was 
included as a category within the propensity score for parity 
and smoking variables.

2.8. Signal detection methods

Signal detection methods can indicate where a medication- 
cancer pair is occurring more frequently than may be 
expected by chance. Where these methods identify that a 
pair is occurring more frequently, this suggests a potential 
increased risk of cancer with the use of the medication. This 
is referred to below as a ‘signal of harm.’ The odds ratio (OR), 
information component (IC), sequential probability ratio test
ing (SPRT), and Bayesian hierarchical modeling (BHM) methods 
were investigated.

2.8.1. Odds ratio (OR)
For each i ¼ 1; . . . I in-utero medications and j ¼ 1; . . . J child
hood cancers, the following 2-by-2 table (Table 1) can be 
defined:

The odds ratio for each medication-childhood cancer pair 
can be calculated with Equation 1.

A 95% confidence interval can be calculated using 
Equation 2.

A OR greater than 1 indicates the medication-cancer pair is 
occurring more frequently than expected by chance. This 
would suggest a potential increased risk of cancer with this 
medication. A signal of harm was defined as the lower limit of 
the 95% confidence interval exceeding 1.

2.8.2. Information component (IC)
The IC is a popular signal detection method [40] which uses 
Bayes theorem. For any individual pregnancy, there is a prior 
probability that the child may subsequently develop a specific 
childhood cancer P Cancerj

� �
. There is also a prior probability 

that the child is exposed to a specific medication in utero 
P Medicationið Þ:The probability of being both exposed and 
developing the cancer is known as the coincident probabil
ity P Cancerj;Medicationi

� �
:

For each medication-cancer pair an information component 
(IC) can be calculated using the likelihood ratio from the 
observed numbers of exposures and cancers, an assumed 
distribution of the number of exposures and cancer, and an 
uninformative prior [40] (Equation 3).

An IC greater than 0 indicates the medication-cancer pair is 
co-occurring more frequently than expected, while an IC less 
than 0 indicates the pair is co-occurring less frequently than 
expected. The IC can be transformed onto the same scale as 
the risk ratio to aid interpretation. A signal of harm was 
defined as the lower limit of the 95% credible interval exceed
ing 0 (transformed 95% credible interval exceeding 1).

2.8.3. Sequential probability ratio testing (SPRT)
The SPRT is a relatively new method of signal detection that 
has primarily been used to scan electronic health records for 
vaccine studies [41]. Assuming observations can be described 
by a Poisson distribution, the log-likelihood ratio (LLR) can be 
defined using Equation 4.

Using the frequencies defined in Table 1, Oij ¼ aij, and Eij is the 
expected number of diagnoses j when exposed to medication i 
under the assumption of independence, as calculated using 
Equation 5.

The hRR is a hypothesized relative risk, which we specified as 
either 4 or 2, indicating a quadrupling or doubling of the risk. 
A threshold of 2.95 approximately corresponds to a theoretical 
type 1 error of 0.05 and a power of 0.95 [41]. A signal of harm 
was defined as an LLR greater than 2.95 for hRRof 4 or 2.

2.8.4. Bayesian hierarchical model (BHM)
Hierarchical models can incorporate the underlying grouped 
structure of the medications and cancers. Berry and Berry’s 
hierarchical mixture model for the identification of adverse 
reactions within clinical trials [42] can be combined with the 

Table 1. 2-by-2 table frequencies for each medication-cancer pair.

Exposed to i 4th level ATC 
medication of interest

Unexposed to 4th level 
ATC medication of interest

Incident j ICCC3 
diagnosis of 
interest

aij bij

No incident ICCC3 
diagnosis of 
interest

cij dij
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assumption that each frequency count is drawn from a 
Poisson distribution as shown in Equation 6.

A 2-dimentional Bayesian hierarchical model based on both 
drug and cancer groupings can then be defined through the 
definition of the hyperparameters for m ¼ 1; . . . ;M medica
tion groups and ca ¼ 1; . . . ;CA cancer groups, as shown in 
Equation 7.

We specified vague priors for these hyperparameters as 
μ mi caj ,Norm 0; 0:05ð Þ and τmi caj ,Gamma 0:01; 0:01ð Þ. A signal 
of harm was defined as a 95% credible interval for δij exceed
ing 1 [42].

2.9. Statistical analysis

All analyses were performed using R version 4.2.2 [43]. Analysis 
was conducted on a combined dataset of all three countries 
stored at the University of Oslo on a secure server. Baseline 
characteristics were compared between children exposed to 
each type of medication.

OR, IC, SPRT and BHM statistics were calculated for each 
medication-cancer pair with at least 5 observations for the 0–9  
years analysis, and the 0–4 and 5–9 years analysis, without any 
adjustment, and with weighting by propensity score. Model 
specifications, including groupings used within the BHM models, 
can be found in supplementary material (p. 7–8).

2.9.1. Calculation of reference associations
Propensity to each medication was calculated for all 
included individuals using generalized linear models with 
covariates listed above; logit links; and interaction terms 
between maternal age, source country, and centered birth 
year. Full details of model covariates can be found in sup
plementary material (page 8–19). Stürmer trimming was 
used to reduce bias from confounding in the tails of the 
distributions, with the lower cut-point the 2.5th percentile 
propensity score in the treated, and upper cut-point the 
97.5th percentile propensity score in the untreated [44]. 
The balance of weights was checked using standardized 
mean differences [45]. Covariates were considered balanced 
if differences were <0.1 [45].

Generalised linear models were then used to calculate 
odds ratios for medication-cancer pairs with at least 5 
observations following trimming for the 0–9 years, 0–4  
years, and 5–9 years analysis. Model covariates included 
the medication of interest; propensity score for the medica
tion of interest; and any variables that were still unbalanced 
following propensity score adjustment. Full details of model 
covariates can be found in supplementary material (page 
19–20).

2.9.2. Confounding control within the signal detection 
pipeline with SMW
Each signal detection method was also applied to a re- 
weighted population, using SMW, with the aim of incorporat
ing confounding control into the signal detection pipeline. 
SMW is preferred when the comparator group is untreated 
[46], answering the question: ‘What would have happened if 
we had not exposed the treated to the treatment?’ Individuals 
dispensed the medication of interest are given a weight of 1, 
while individuals not dispensed the medication are given a 
weight based on the modeled propensity to the medication, 
found in Equation 8.

2.9.3. Signal detection performance
Four properties of the signal detection methods were calcu
lated assuming all statistically significant (at the 5% level) 
propensity score adjusted odds ratios indicated true associa
tions (the reference standard). True positive (TP); True negative 
(TN); False positive (FP) and False negative (FN) signals were 
determined as defined in Table S3.

Sensitivity is the proportion of pairs identified as signals of 
harm, where the propensity score adjusted odds ratio was 
statistically significant at the 5% level (Equation 9).

Specificity is the proportion of pairs not identified as signals of 
harm where the propensity score adjusted odds ratio was not 
statistically significant at the 5% level (Equation 10).

Positive predictive value is the probability that an identified 
signal of harm has a propensity score adjusted odds ratio that 
is statistically significant at the 5% level (Equation 11).

Negative predictive value is the probability that a pair not 
identified as a signal of harm does not have a propensity 
score adjusted odds ratio that is statistically significant at the 
5% level (Equation 12).

3. Results

The initial combined dataset included 2,023,510 children with 
3,435 cancers (0.17%) diagnosed before the age of 10. The 
most common cancer was lymphoid leukemia (993 children, 
29%), followed by astrocytoma (304 children, 8.9%), and neu
roblastoma and ganglioneuroblastoma (265, 7.7%).

In total, 701,743 children (35%) had mothers who fulfilled 
prescriptions for at least one antibiotic, antidiabetic, cardio
vascular medication, immunosuppressive agent, sex hormone, 
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or thyroid therapy during the pregnancy window. The most 
dispensed medications were J01CA Penicillins with extended 
spectrum (258,418 pregnancies, 13%), J01CE Beta-lactamase 
sensitive penicillins (121,532 pregnancies, 6.0%), and J01DB 
First generation cephalosporins (109,932 pregnancies, 5.4%). 
In total, 223,662 mothers (11%) had more than one prescrip
tion of a medication of interest during the pregnancy window.

In total, 1,952,263 children (96%) were included in the 0–4 
analysis; of which 2,429 (0.12%) were diagnosed with cancer 
within the first 5 years of life. Furthermore, 802,293 children 
(40%) were included in the 0–9 analysis, and 801,163 (40%) in 
the 5–9 analysis (1,221,217 children (60%) were excluded due to 
being born after 2010, too late to have 10 years follow-up before 
the study end date); of which 1,762 (0.22%) were diagnosed with 
cancer in the first 10 years of life, and 632 (0.08%) were diag
nosed between the ages of 5 and 9 years (Figure 1).

The proportion of pregnancies exposed differed between 
the six medication groups (25% exposed to antibiotics; 4.6% 
exposed to sex hormones; 3.7% exposed to immunosuppres
sive agents; 3.3% exposed to thyroid therapy; 2.8% exposed to 
cardiovascular medications; and 1.5% exposed to antidia
betics). Differences in characteristics between non-exposed 
and those dispensed one or more of the six medication 
groups investigated were as expected for each medication 
group (Table 2). For example, 46% of individuals dispensed 
antidiabetics had gestational diabetes compared to 4.8% in 
those unexposed to any medication group of interest; 50% of 
those dispensed sex hormones used assisted reproductive 
technology compared to 3.8% in those unexposed.

3.1. Results of signal detection

Signal detection methods were only calculated for medication- 
cancer pairs, with at least 5 observations: 67 medication-cancer 
pairs within the 0–4 years analysis; 11 pairs within the 5–9 years 
analysis; and 39 within the 0–9 years analysis. A total of 17 
medication groups had at least one pair included in the analysis 
(identified in Supplementary Table S1a–S1f). Full results for 
these can be found in Supplementary Tables (S4–S73).

3.2. Performance according to reference associations

Propensity scores were calculated for each medication 
included in the analysis. For 11 of the 17 medication groups, 
all important covariates (source country; maternal age; 
chronic hypertension; chronic diabetes; assisted reproductive 
technology; smoking; parity; child sex; and maternal cancer 
prior to pregnancy) were balanced following adjustment. 
Medications that continued to have some unbalanced covari
ates following adjustment were fast, intermediate, and long- 
acting insulins and analogues for injection; alpha and beta 
blocking agents; pregen (4) derivatives; and gonadotropins. 
Density plots and balance are detailed in Supplementary 
Figures S2–S18.

Trimming of propensity score tails reduced the number of 
cancer observations within the exposed population, in some 
cases to below 5. The number of original and trimmed obser
vations for each medication-cancer pair can be found in 
Supplementary Tables S4–S73. This could be attributed to 

large reductions in the population sizes for some medications 
with the use of Stürmer trimming cutoffs. For example, with 
fast, intermediate, and long-acting insulins and analogues for 
injection, trimming removed 88%, 72% and 95% of the dis
pensed population, respectively. Other medications with large 
reductions in the dispensed population included pregen (4) 
derivatives (79%); and gonadotrophins (86%).

As the trimmed populations were unlikely to be represen
tative of the population of women dispensed these medica
tions, generalized linear regression modeling with propensity 
score adjustment was only calculated for medication-cancer 
pairs with at least 5 observations following trimming (48 pairs 
within the 0–4 analysis; 11 pairs within the 5–9 analysis; 28 
pairs within the 0–9 analysis). There were increased odds at 
the 5% level for 4 medication-cancer pairs (8.3%) with at least 
5 observations following trimming in the 0–4 year analysis; 1 
medication cancer pair (10%) in the 5–9 year analysis; and 3 
medication-cancer pairs in the 0–9 year analysis (11%). Full 
results from these propensity score adjusted models can be 
found in Supplementary Tables S4–S73.

Results of the generalized linear regression modeling with 
propensity score adjustment were considered the reference 
standard for calculating sensitivity, specificity, positive predic
tive value, and negative predictive value of the four signal 
detection methods (Table 3). In the 0–4 analysis the OR had 
the highest sensitivity (0.75) identifying the most true posi
tives (n = 3). The IC had a higher specificity (0.98) than the OR 
(0.95), identifying fewer false positives (1 and 2 respectively). 
The SPRT identified one true positive, while the BHM failed to 
identify any true positives in the 0–4 analysis.

Signal detection results for the 8 medication-cancer pairs 
with increased adjusted odds at the 5% level are presented in 
Figure 2. The only pair not identified by any signal detection 
method (a false negative) was lymphoid leukemia with the use 
of Beta-lactamase resistant penicillins (adjusted odds ratio 2.8 
(95% confidence interval 1.3–6.4)). True positive signals were 
all for CNS and peripheral nervous cell tumors.

The 3 medication-cancer pairs with false-positive signals 
are presented in Figure 3. The OR for neuroblastoma and 
ganglioneuroblastoma with propionic acid derivatives (2.1) 
was similar to the adjusted odds ratio (2.0), but with tighter 
confidence intervals (Figure 3(b)). Whereas the adjusted point 
estimates for retinoblastoma with first-generation cephalos
porins (Figure 3(a)); and lymphoid leukemia with nitrofuran 
derivatives (Figure 3(c)) were somewhat lower than point 
estimates for the signal detection methods.

3.3. Signal detection with Re-weighting by SMW

Signal detection methods were also applied to the popula
tion re-weighted by SMW. Figure 4 demonstrates the pattern 
of results found for neuroblastoma and ganglioneuroblas
toma with penicillins for extended spectrum, which is similar 
across the other medication-cancer pairs. Most OR point esti
mates were closer to the propensity score adjusted odds 
ratios after re-weighting. However, OR confidence intervals 
were wider; and IC and BHM point estimates and confidence 
intervals were shrunk toward the null. As such, only one 
signal was found following adjustment. Full results of 
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propensity score weighted signal detection can be found in 
Supplementary Tables S4–S73.

4. Discussion

The most important findings of this study were that the 
traditional signal detection methods (OR and IC), without 

adjustment, can be used to identify areas to focus research 
on trans-generational carcinogenic associations. The use of 
the OR or IC should provide adequate power to detect signals 
requiring further investigation, while the use of the IC may 
help minimize false-positive signals. The SPRT and BHM mod
els were unable to find signals within this dataset. These 
results are consistent with the known characteristics of the 

Table 3. Sensitivity, specificity, positive predictive value, and negative predictive value of unweighted signal detection methods.

Method True Positives False Positives True Negatives False Negatives Sensitivity Specificity Positive Predictive Value Negative Predictive Value

0–4 Year Analysis (48 pairs)
OR 3 2 42 1 0.75 0.95 0.60 0.98
IC 2 1 43 2 0.50 0.98 0.67 0.96
SPRT 1 0 44 3 0.25 1.00 1.00 0.94
BHM 0 1 43 4 0 0.98 – 0.91
5–9 Year Analysis (11 pairs)
OR 1 0 10 0 1.00 1.00 1.00 1.00
IC 1 0 10 0 1.00 1.00 1.00 1.00
SPRT 0 0 10 1 0 1.00 – 0.91
BHM 0 0 10 1 0 1.00 – 0.91
0–9 Year Analysis (28 pairs)
OR 3 1 24 0 1.00 0.96 0.75 1.00
IC 3 1 24 0 1.00 0.96 0.75 1.00
SPRT 0 0 25 3 0 1.00 - 0.89
BHM 1 1 24 2 0.33 0.96 0.50 0.92

Positive Predictive Value is incalculable where no signals are identified (denoted by “–”). 

Figure 2. Unadjusted OR, IC, BHM and SPRT results for medication-cancer pairs with statistically significant increase in adjusted odds ratio.
Comparison of results from unadjusted OR, IC, BHM, SPRT, and adjusted odds ratios for pairs with an increased adjusted odds ratio at the 5% level. Odds ratios were adjusted for propensity 
score and additional covariates as needed. SPRT hRR2 uses a hypothesized relative risk of 2. SPRT hRR4 uses a hypothesized relative risk of 4. Dotted vertical line represents the null value of 
1. BHM results have been transformed to the same scale as the OR, BHM, and Odds Ratio. Statistical significance/signal denoted by *. 

8 H. JOHNSON ET AL.



methods investigated when observed frequencies are low 
[47,48].

These findings are important as there has been little 
research in this area to date. Information on carcinogenic safety 
for the offspring for many medications used during pregnancy 
is lacking. Pharmacovigilance activities specifically tailored to 
address this knowledge gap are therefore warranted. 
Appropriate direction of research focus will help provide valu
able information on potential harm and safety of medications.

Propensity score adjustment had several challenges in this 
setting, both for producing adjusted odds ratios, and for 
producing SMR re-weighted populations for signal detection. 
Calculated propensities were typically very small, due to the 
low proportions of women dispensed the specific medication, 
and most covariates not being strong predictors of medication 
use. For most medications, stronger predictions of medication 
use (e.g. infection during pregnancy for anti-infectives) were 
not available. Stürmer trimming was chosen as the preferred 
trimming strategy as it has been shown to reduce bias from 
unmeasured confounding with SMW weighting in simulations 

[49], however for the antidiabetic and hormonal medications 
this resulted in large reductions in the analysis population. 
Strong confounders for these medications were also highly 
predictive of medication use (i.e. diabetes for antidiabetics; 
and assisted reproductive technology for hormonal medica
tions), resulting in poor overlap. Removal of these covariates 
may have improved overlap but would have left bias from 
strong residual confounding.

When applying signal detection methods to the re- 
weighted population, confidence intervals of the OR were 
wider and point estimates and confidence intervals of the IC 
and BHM were shrunk toward the null value. These effects are 
due to the reduction in population size, due to both trimming 
(reducing the actual size of the dispensed and control popula
tions), and SMR weighting (reducing the effective size of the 
control population). As such, power to detect possible harm 
was reduced. Methods for re-sizing the population to be 
similar to that of the original population need to be investi
gated before propensity score adjustment can be incorpo
rated into these signal detection methods.

Figure 3. Medication-cancer pairs with false-positive signals from unadjusted OR, IC or BHM.
Comparison of results from unadjusted OR, IC, BHM, SPRT, and adjusted odds ratios for pairs with an identified signal, but adjusted odds ratio not significantly increased at the 5% level. 
Odds ratios were adjusted for propensity score and additional covariates as needed. SPRT hRR2 uses a hypothesized relative risk of 2. SPRT hRR4 uses a hypothesized relative risk of 4. 
Dotted vertical line represents the null value of 1. BHM results have been transformed to the same scale as the OR, BHM, and Odds Ratio. Statistical significance/signal denoted by *. 
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There are several limitations to this study that should be 
acknowledged.

Firstly, medications were grouped to within the 4th level 
ATC code. Some of these medications have different proper
ties with regard to ability to cross the placenta and possible 
biological plausibility for carcinogenicity. By grouping in this 
way, associations will be averaged across the group, poten
tially masking signals. However, due to the rarity of both the 
outcomes and exposures, this grouping was necessary to 
obtain a small number of meaningful results.

Secondly, several design choices will have introduced, and 
failed to account for, bias and confounding. Some misclassifi
cation of exposure is expected as the prescription registry 
does not provide information on medications dispensed in 
hospitals or confirm that a dispensed medication has been 
consumed (i.e. non-adherence). The definition of the exposure 
window may result in missing prescriptions that are infre
quently fulfilled such as some contraceptives, however 
extending the window to prescription fulfilled in the months 
prior to pregnancy may result in inclusion of medications that 
were not taken during pregnancy. As prescriptions are 
recorded prospectively and irrespective of the cancer out
come, any such misclassification of exposure is expected to 
be non-differential and drive bias toward the null.

Propensity score adjustment was restricted to the variables 
available within the registry datasets. The use of alternative 
covariates may have improved the balance. A single propen
sity score was used for pooled data with the inclusion of a 
variable for the source county. Specifying individual propen
sity scores for each country may have improved model per
formance but would also have increased complexity and 
computation time. Missing variables were included as a cate
gory for parity and smoking, rather than imputed. Maternal 
cancer was used as a variable but could have alternatively 
been used as an exclusion criterion. However, as the outcome 
was rare, a choice was made to minimize exclusions.

We used propensity score adjusted odds ratios as the refer
ence standard for calculating performance metrics of the signal 
detection methods investigated. It is important to note that this 

was used as a ‘best available’ standard, and medication-cancer 
pairs with increased odds may not be indicative of causal asso
ciations. We also did not adjust for multiple comparisons, and as 
such 5% of identified associations can be expected to have arisen 
by chance. Most identified associations are for pairs that are yet 
to be thoroughly researched such as CNS and peripheral nervous 
cell tumors with macrolides, first generation cephalosporins, and 
propionic acid derivatives. Further investigation of the associa
tions identified here are required that consider covariates and 
exposure windows specific to the individual medications, and 
confounding by indication.

Sensitivity, specificity, positive predictive value, and nega
tive predictive value were only calculated for pairs with at 
least 5 observations following trimming. The excluded pairs 
were more commonly for medications that had a greater 
imbalance prior to adjustment (e.g. at least one covariate 
with an SD > 1.0). As such, our conclusion that signal detection 
methods can identify areas of further study without the need 
for adjustment, is unlikely to extend to medications with large 
imbalances in important confounders.

5. Conclusions

Our results demonstrate that signal detection methods can be 
employed to identify associations between in-utero medica
tion exposures and childhood cancers. These could potentially 
be used to screen for carcinogenic effects of medications used 
during pregnancy.

We recommend signal detection methods are used as a 
screening tool for in-utero medication-cancer associations and 
applied to a wider range of medication groups, including 
psychotropics, and antineoplastic agents. The IC or OR should 
be used as preferred methods due to the small observed 
frequencies. Further work is needed on the incorporation of 
propensity score adjustment within these signal detection 
methods, as it may further improve the sensitivity and speci
ficity of these methods. For now, unadjusted signal detection 
should be performed, followed with consideration of the cov
ariates for identified signals. Priority should be given to signals 

Figure 4. Adjusted and unadjusted OR, IC, BHM and GLM for J01CA–041.
Comparison of results from adjusted and unadjusted OR, IC, BHM, SPRT, and adjusted odds ratios for neuroblastoma and ganglioneuroblastoma with the use of penicillins with extended 
spectrum. Odds ratio was adjusted for propensity score. SPRT hRR2 uses a hypothesized relative risk of 2. SPRT hRR4 uses a hypothesized relative risk of 4. Dotted vertical line represents the 
null value of 1. BHM results have been transformed to the same scale as the OR, BHM, and Odds Ratio. Statistical significance/signal denoted by *. 
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with the largest point estimates identified by the adjusted 
analysis, largest observed frequencies, and a biologically plau
sible mechanism of carcinogenicity. Signals where the 
observed frequency is low should be followed-up with caution 
as they are more likely to be false positives.

Signals should not be considered as evidence of either 
harm or non-harm. All signals should be followed up by 
well-conducted causal observational studies that consider cov
ariates specific to the individual medication and confounding 
by indication. Signals identified in this work are being investi
gated further by the Nordic Childhood Cancer Project.

We also recommend collaboration between countries 
where mother-child linkage to cancer registry data is feasible. 
Only with larger sample sizes and long follow-up time can 
these rare medication-childhood cancer associations be thor
oughly investigated.
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